Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1994 Printed in Austria

Acetylene Chemistry, Part 32 [1]: Alkinylation and Cyclic Rearrangement of Theophylline with Unsaturated Alcohols by Mitsunobu Reaction

Johannes Reisch^{1,*}, Akkinepalli Raghu Ram Rao^{1,2}, and Cyril Odianose Usifoh³

- ¹ Institut für Pharmazeutische Chemie, Westfälische Wilhelms-Universität, Hittorfstraße 58-62, D-48149 Münster, Federal Republic of Germany
- ² University College, Pharmaceutical Sciences, Kakatiya University, Warangal 506009, India
- ³ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Benin, Benin City, Nigeria

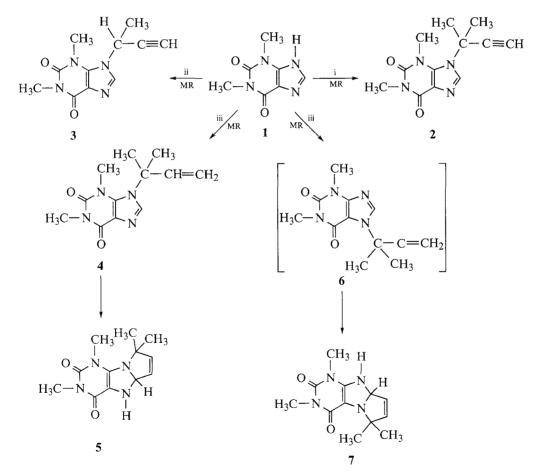
Summary. The reaction of theophylline (1) with 2-methyl-3-butyn-2-ol and 1-butyn-3-ol under Mitsunobu conditions gave the respective 9-substituted derivatives 9-[2-(2-methyl-3-butynyl)]-theophylline (2) and 9-[2-(3-butynyl)]-theophylline (3). On reaction with 2-methyl-3-buten-2-ol, theophylline yielded in addition to the 9-[2-(2-methyl-3-butenyl)]-theophylline (4), two more cyclic products, identified as 1,5,5a,8-tetrahydro-1,3,8,8-tetramethyl-2H-pyrrolo[1,2-e]purine-2,4(3H)-dione (5) and 8a,9-dihydro-1,3,6,6-tetramethyl-1H-pyrrolo[2,1-f]purine-2,4(3H,6H)-dione (7).

Keywords. Theophylline; Unsaturated alcohols; Cyclic rearrangement; Mitsunobu reaction.

Acetylenchemie, 32. Mitt.: Alkinylierung und cyclische Umlagerung von Theophyllin mit ungesättigten Alkoholen mittels Mitsunobu-Reaktion

Zusammenfassung. Die Reaktion von Theophyllin (1) mit 2-Methyl-3-butin-2-ol und 1-Butin-2-ol unter Mitsunobu-Bedingungen führte zu den 9-substituierten Derivaten 9-[2-(2-Methyl-3-butinyl)]-theophyllin (2) bzw. 9-[2-(3-Butinyl)]-theophyllin (3). Bei der Reaktion mit 2-Methyl-3-buten-2-ol ergab Theophyllin außer 9-[2-(2-Methyl-3-butenyl)]-theophyllin (4) noch zwei weitere cyclisierte Produkte, die als 1,3,8,8-Tetramethyl-1,5,5a,8-tetrahydro-pyrrolo[1,2-e]purin-2,4(3H)-dion (5) und 1,3,6,6-Tetramethyl-8a,9-dihydro-1H,6H-pyrrolo[2,1-f]purin-2,4-dion (7) identifiziert wurden.

Introduction


The usefulness of the Mitsunobu reaction [2] in various synthetic procedures can not be overemphasized. Recently we utilized this reaction in synthesizing some heterocyclic derivatives of acridinones [3] and quinazolinones [4] using acetylenic alcohols.

Theophylline (1) and its derivatives are well known to exhibit a variety of pharmacological actions including antiasthmatic, diuretic, respiratory stimulant

activities and represent a prototype of a wide range of xanthine antagonists for adenosine receptors [5, 6]. In addition, they could have the potential for the development as research tools as well as clinical agents. 7-[$\{3-[4-Diphenylmethoxy]-1-piperidinyl\}$ propyl]-3,7-dihydro-1,3-dimethyl-1*H*-pyrine-2,6-dione (WY-49051), a derivative of theophylline, has been recently found to be a potent orally active, non-sedating histamine H₁-receptor antagonist [7, 8]. The syntheses of various 7-substituted theophylline derivatives have been reported earlier [9–12].

Results and Discussion

Under Mitsunobu reaction conditions, using 2-methyl-3-butyn-2-ol and 1-butyn-3-ol as alkylating agents, theophylline (1) principally yielded the respective 9-substituted products, 9-[2-(2-methyl-3-butynyl)]-theophylline (2) and 9-[2-(3butynyl)]-theophylline (3) (Scheme 1). Anhydrous dioxane was found to be the solvent of choice. The characterisation of these 9-substituted products was based on their ¹H- and ¹³C-NMR data and by comparison with the data of similar derivatives of nucleosides reported in the literature [13–15]. Recent reports also indicated a favoured 9-substitution over the possible 7-substitution while alkylating

Scheme 1. $i = HO-C(CH_3)_2-C\equiv CH$; $ii = HO-CH(CH_3)-C\equiv CH$; $iii = HO-C(CH_3)_2-CH=CH_2$; MR = Mitsunobu Reaction: triphenylphosphine, diethylazodicarboxylate, dry dioxane

purine nucleosides using the Mitsunobu reaction [16, 17]. No significant amounts of the corresponding 7-substituted theophylline derivatives or their possible cyclised products were isolated.

Interestingly, a similar reaction between the ophylline and 2-methyl-3-buten-2-ol resulted in a mixture [17], which on chromatographic separation yielded three compounds. The tlc of the mixture appeared as a single spot in methanol:methylene chloride (2:98) mixture. However, their separation was possible using ethyl acetate: methylene chloride (15:85) as solvent system. The expected open-chain derivative. 9-[2-(2-methyl-3-butenyl)]-theophylline (4) was one of them. The other two were found to be either isomeric or cyclised derivatives of 4; their mass spectra showed the molecular ion at m/z = 248 with relative intensities of 18% and 15%, respectively. The IR spectrum of 5 indicated a sharp absorption at $3450 \,\mathrm{cm}^{-1}$ which is diagnostic of a NH group. In the ¹H-NMR spectrum, two different signals appeared at $\delta = 5.12$ and 5.19 ppm as two doublets corresponding to one proton each with coupling constants J = 5.5 Hz and 0.8 Hz, respectively. Another proton signal was found further down field at $\delta = 6.15$ ppm as a doublet of a doublet as a result of coupling with the other two. This was suggestive of cyclization of the 9-alkylated product, 4. The corresponding NH appeared as a broad signal at $\delta = 11.32$ ppm. This downfield shift could be due to the hydrogen bonding between 6-carbonyl and 5-NH. The doubly bound 7 and 8 carbon signals in ¹³C-NMR spectrum were recorded at $\delta = 138.9$ and 142.0 ppm, respectively. Based on these data, 5 was identified as 1,5,5a,8-tetrahydro-1,3,8,8-tetramethyl-2H-pyrrolo[1,2-e]purine-2,4(3H)dione.

The ¹H-NMR spectrum of the third product was similar to the one of 5, except the shift of the NH signal to $\delta = 7.71$ as a singlet. This data was indicative of the formation of another cyclised product, 8a,9-dihydro-1,3,6,6-tetramethyl-1*H*pyrrolo-[2,1-f]purine-2,4(3*H*,6*H*)-dione (7). The reaction apparently resulted essentially in the formation of a 9-substituted derivative of theophylline, 4. The compound 5 is a cyclised product of 4. The formation of 7, another cyclised product could have only resulted from the alkylation at the 7-position on theophylline, followed by a concommittant cyclisation. The respective open chain precursor 6 was not isolated. All compounds were unequivocally characterized by their spectroscopic data, supported by high resolution mass spectral analyses.

Experimental Part

Melting points were determined on a Kofler hot stage apparatus and were uncorrected. IR spectra were taken on a Shimadzu IR-470 spectrophotometer. ¹H-NMR and ¹³C-NMR spectra were recorded on a Varian Gemini 200 spectrometer. All NMR spectra were recorded using deutereochloroform with tetramethylsilane as the internal standard. Mass spectra were obtained on a Varian MAT 44S instrument at 70 eV and high resolution mass spectra on a Finnigan MAT 312. Silica gel 60 F_{254} (precoated, aluminum sheets, 0.2 mm thickness, Merck 5549) were used for analytical tlc and 60 F_{254} (glass plates, 0.25 mm thickness, Merck 5715) for preparative work. Column chromatography was carried out on silica gel 60 (particle size 0.063–0.200 mm, Merck 7734).

Reaction of Theophylline (1) with Unsaturated Alcohols Under Mitsunobu Conditions

To a stirred solution of the phylline, unsaturated alcohol, triphenyl phosphine (TPP) in anhydrous dioxane was added diethylazadicarboxylate (DEAD) drop-wise over a period of 15 min. The slightly

warmed reaction mixture was heated under reflux for 3 h. After the removal of dioxane in vacuo, the syrupy reaction product was subjected to successive extraction with toluene:petroleum ether $(40-60 \,^{\circ}C)$ mixture (1:1) such that a large part of the white crystalline triphenylphosphine oxide, which was formed in the process of the reaction, was left behind. Column chromatography, using methanol:methylene chloride (2:98) was used for the separation of the products and further purification was carried out with preparative plate chromatography whenever necessary.

7-[2-(2-Methyl-3-butynyl)]-theophylline (2)

2-Methyl-3-butyn-2-ol (0.17 g, 2.0 mmol), **1** (0.3 g, 1.70 mmol) in 10 ml of anhydrous dioxane in the presence of *TPP* (0.655 g, 2.5 mmol) was added *DEAD* (0.435 g, 2.5 mmol) as in the general procedure to give **2** from methylene chloride: petroleum ether (40–60 °C) (3:7) as colourless needles (0.170 g, 30%), m.p. 136–140 °C. IR (KBr): 3320 (C=C), 2945 (C–H), 2125 (C=C), 1704 (C=O), 1662 (C=O), 1219 (C=N) cm⁻¹; ¹H-NMR: $\delta = 2.05$ (s, 6H, 2 × CH₃), 2.87 (s, 1H, C=CH), 3.44 (s, 3H, 3-CH₃), 3.61 (s, 3H, 1-CH₃), 8.24 (s, 1H, 8-H); ¹³C-NMR: $\delta = 28.6$ (3-CH₃), 29.7 (1-CH₃), 29.9 (2 × CH₃), 55.9 (C-1'), 75.8 (C-3'), 84.1 (C-2'), 107.4 (C-5), 140.8 (C-8), 151.3 (C-4), 151.5 (C-2), 154.4 (C-6). EI-MS: *m/z* (%): 247 (3) [*M*⁺ + 1], 246 (15) [*M*⁺], 245 (3) [*M*⁺ - 1], 180 (100) [*M*⁺ - C₅H₇], 151 (6), 123 (28), 104 (5), 95 (55), 86 (30), 67 (37), 53 (15); HRMS: Calcd. for C₁₂H₁₄N₄O₂ 246.1116; found 246.11116.

7-[2-(3-Butynyl)]-theophylline (3)

3-Butyn-2-ol (0.14 g, 2.0 mmol), 1 (0.3 g, 1.70 mmol) in 10 ml of anyhydrous dioxane in the presence of *TPP* (0.655 g, 2.5 mmol) was added *DEAD* (0.435 g, 2.5 mmol) as in the general procedure to give **3** from methylene chloride:petroleum ether (40–60 °C) (3:7) as colourless needles (0.125 g, 28%), m.p. 144–148 °C. IR (KBr): 3280 (C=C), 2960 (C–H), 2130 (C=C), 1720 (C=O), 1670 (C=O), 1229 (C=N) cm⁻¹; ¹H-NMR: $\delta = 1.78$ (d, J = 6.8 Hz, 3H, 1'-CH₃), 2.69 (d, J = 2.4 Hz, 1H, 3'-H), 3.42 (s, 3H, 3-CH₃), 3.60 (s, 3H, 1-CH₃), 5.77 (m, 1H, 1'-H), 7.97 (s, 1H, 8-H); ¹³C-NMR: $\delta = 24.5$ (1'-CH₃), 28.1 (3-CH₃), 29.7 (1-CH₃), 44.9 (1'-C), 75.5 (3'-C), 79.9 (2'-C), 106.2 (C-5), 139.4 (C-8), 149.3 (C-4), 151.7 (C-2), 155.1 (C-6). EI-MS: m/z (%): 232 (26), $[M^+]$, 231 (12) $[M^+ - 1]$, 207 (10) $[M^+ - (C=CH)]$, 180 (24), 175 (14), 147 (15), 123 (32), 95 (70), 67 (63), 53 (100); HRMS: Calcd. for C₁₁H₁₂N₄O₂ 232.09602; found 232.09553.

7-[2-(2-Methyl-3-butenyl)]-theophylline (4)

2-Methyl-3-buten-2-ol (0.174 g, 2.0 mmol), **1** (0.3 g, 1.70 mmol) in 10 ml of anhydrous dioxane in the presence of *TPP* (0.655 g, 2.5 mmol) was added *DEAD* (0.435 g, 2.5 mmol) as in the general procedure to give **4** from methylene chloride: petroleum ether (40–60 °C) (3:7) as colourless needles (0.063 g, 15%), m.p. 118–121 °C. IR (KBr): 2915 (C–H), 1693 (C=O), 1649 (C=O), 1248 (C=N), 1023 (C=C) cm⁻¹; ¹H-NMR: $\delta = 1.80$ (d, J = 1.3 Hz, 6H, [1'-(2 × CH₃)], 3.42 (s, 3H, 3-CH₃), 3.59 (s, 3H, 1-CH₃), 4.92 (d, J = 6.9 Hz, 2H, 3'-H), 5.43 (m, 1H, 2-H), 7.54 (s, 1H, 8-H); ¹³C-NMR $\delta = 25.6$ [1'-(2 × CH₃)], 27.9 (3-CH₃), 29.5 (1-CH₃), 44.6 (3'-C), 57.5 (1'-C), 106.7 (C-5), 117.7 (2'-C), 139.7 (C-8), 149.8 (C-4), 152.2 (C-2), 154.5 (C-6); EI-MS: m/z (%): 249 (2.2) [M^+ + 1], 248 (12), [M^+], 180 (100), [$M^+ - C_5H_8$], 151 (5), 123 (24), 95 (38), 83 (12), 69 (55); HRMS: Calcd. for C₁₂H₁₆N₄O₂ 248.12732; found 248.12729.

1,5,5a,8-Tetrahydro-1,3,8,8-tetramethyl-2H-pyrrolo[1,2-e]purine-2,4(3H)-dione (5)

Obtained from the mixture of the reaction product, as described above for **4**, m.p. 116–119 °C [methylene chloride:petroleum ether (40–60 °C) (5:5)] in 8% overall yield (0.035 g). IR (KBR): 3580 (NH), 2925 (C–H), 1703 (C=O), 1658 (C=O), 1020 (C=C) cm⁻¹; ¹H-NMR: $\delta = 1.56$ [s, 6H, 8-(2 × CH₃)], 3.45 (s, 3H, 1-CH₃), 3.63 (s, 3H, 3-CH₃), 5.12 (dd, J = 5.5 Hz, 0.8 Hz, 1H, 5a-H), 5.19 (d, J = 0.8 Hz, 1H, 7-H), 6.15 (dd, J = 10.3Hz, 7.3 Hz, 1H, 6-H), 11.32 (b, 1 H, NH); ¹³C-NMR: $\delta = 27.4$ [8-(2 × CH₃)], 28.6

 $(1-CH_3)$, 29.7 (3-CH₃), 60.8 (C-5a), 106.2 (C-4a), 114.9 (C-8), 138.9 (C-6), 142.0 (C-7), 149.5 (9a-C), 151.3 (C-2), 153.8 (C-4); EI-MS: m/z (%): 249 (0.5) $[M^+ + 1]$, 248 (18) $[M^+]$, 233 (10) $[M^+ - CH_3]$, 181 (20) $[249 - C_5H_8]$, 180 (100) $[M^+ - C_5H_8]$, 179 (22) [180-H], 149 (34), 123 (54), 95 (46), 83 (23), 69 (56), 57 (69); HRMS: Calcd. for $C_{12}H_{16}N_4O_2$ 248.12732; found 248.12694.

8a,9-Dihydro-1,3,6,6-tetramethyl-1H-pyrrolo-[2,1-f]purine-2,4(3H,6H)-dione (7)

Obtained from the mixture of the reaction product, as described above for **4**, [methylene chloride: petroleum ether (40–60 °C) (1:9)] in 10% yield (0.042 g), m.p. 123–125 °C. IR (KBr): 3480 (NH), 2960 (C–H), 2130 (C=C), 1715 (C=O), 1680 (C=O) cm⁻¹; ¹H-NMR: $\delta = 1.85$ [s, 6H, 6-(2 × CH₃)], 3.43 (s, 3H, 1-CH₃), 3.61 (s, 3H, 3-CH₃), 5.24 (d, J = 7.2 Hz, 1H, 8a-H), 5.31 (d, J = 1.7 Hz, 7-H), 6.32 (dd, J = 7.2 Hz, 1.7 Hz, 1H, 8-H), 7.71 (s, 1H, NH); ¹³C-NMR $\delta = 27.7$ [6-(2 × CH₃)], 28.6 (1-CH₃), 29.8 (3-CH₃), 61.3 (6-C), 106.2 (C-4a), 115.2 (C-8a), 139.4 (C-7), 141.8 (C-8), 149.7 (C-9a), 150.9 (C-2), 154.4 (C-4); EI-MS: m/z (%): 249 (1.5) [M^+ + 1], 248 (15) [M^+], 181 (22) [249-C₅H₈], 180 (100) [$M^+ - C_5H_8$], 179 (18) [180-H], 151 (12), 123 (23), 95 (15), 83 (45), 69 (50); HRMS: Calcd. for C₁₂H₁₆N₄O₂ 248.12732; found 248.12673.

Acknowledgements

One of us, A. R. R. is grateful to Deutscher Akademischer Austauschdienst (DAAD) for a fellowship. We thank Dr. G. Penzlin of Beilstein Institute, Frankfurt, for his assistance in the nomenclature.

References

- [1] Acetylene Chemistry, Part 31: Reisch J., Usifoh C. O. (1993) J. Heterocyl. Chem. 30: 659
- [2] Mitsunobu O. (1981) Synthesis: 1
- [3] Reisch J., Voerste A. A. W., Top M., Dziemba P. (1992) Monatsh. Chem. 123: 473
- [4] Reisch J., Rao A. R. R., Usifoh C. O. (1993) Monatsh. Chem. 124: 1217
- [5] Daly J. W., Padgett W., Shamin M. T., Butts-Lamp P., Waters J. (1985) J. Med. Chem. 28: 487
- [6] Peet N. P., Lentz N. L., Meng E. C., Dudley M. W., Ogden A. M. L., Demeter D. A., Weintraub H. J. R., Bey P. (1990) J. Med. Chem. 33: 3127
- [7] Abou-Gharbia M., Nielsen S. T., Webb M. B. (1987) U.S. Patent 4,716,166
- [8] Abou-Gharbia M., Nielsen S. T., Andree T. H., Tasse R., Leventer S. (1990) Drug Dev. Res. 21:63
- [9] Reisch J. (1968) Arzneim. Forsch./Drug Res. 18: 1485
- [10] Reisch J., Seeger U. (1977) Arch. Pharm. (Weinheim) 310: 851
- [11] Garst J. E., Kramer G. L., Wu Y. J., Wells J. N. (1976) J. Med. Chem. 19: 499
- [12] Powloski M., Buschauer A., Schunack W. (1989) Arch. Pharm. (Weinheim) 322: 447
- [13] Fisher P., Lösch G., Schmidt R. R. (1978) Tetrahedron Lett.: 1505
- [14] Parkin A., Harnden M. R. (1982) J. Heterocycl. Chem. 19: 33
- [15] Wright G. E., Dudycz L. W., Kazimierczuk Z., Brown N. C., Khan N. N. (1987) J. Med. Chem. 30: 109
- [16] Toyota A., Katagiri N., Kaneko C. (1992) Chem. Pharm. Bull. 40: 1039
- [17] Jenny T. F., Horlacher J., Previsani N., Benner S. A. (1992) Helv. Chim. Acta 75: 1944

Received March 3, 1993. Accepted April 14, 1993